Experience in Using Large-Area Detector Panels for Building a High-Sensitivity Small-Animal PET Scanner

Chien-Min Kao

Assistant Professor
Department of Radiology
The University of Chicago

Significance of high sensitivity

A simple concept

high sensitivity high scatter high randoms single subject complete data high sensitivity high scatter high randoms multiple subjects incomplete data?

reduced sensitivity reduced scatter reduced randoms complete data

A Table-Top Prototype

- 104x72 LSO/LYSO dual-layered crystals, 2.1x2.1x20mm³ in size, binary DOI, quadrant-sharing
- Covers ~80% solid angle with 5cm spacing, ~38% central sensitivity

Scanner Sensitivity

@Central plane, CW=10ns

Noise-Equivalent Count Rate

Comparison with reported NECR peaks

Noise-Equivalent Sensitivity

Parallax Errors (DOI blur)

Sensitivity function @central plane

Front-front layer

1.2mm, 1.2mm

1.4mm, 8.0mm

Symmetry property

ONLY one pixel need be simulated in each z-plane.

FDG resolution phantom

Ideal line integral

Modeling the responses by MC simulation

Initial FDG-rat images

Ideal line integral

Modeling response

Initial FDG-rat Images

Effective sensitivity

Reference system: microPET FOCUS geometry, 7% quoted central sensitivity, 1.35mm stationary resolution

Challenges

Challenges (cont'd)

Challenges (cont'd)

Challenges (cont'd)

Summary & Conclusions

- High sensitivity and NECR at low activity
 - Reduced dose in imaging
 - Better contrast-to-noise ratio, lower tracer concentrations
 - Improved temporal resolution
 - Following tracers over a longer period of time
- Image spatial resolution through accurate image reconstruction
- High effective sensitivity can be achieved
- Challenges: resolution normal to detectors; countrate performance; cross-talk in PQS

